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1 | INTRODUCTION

| Katja Klumpp? | Daniel Sauvant®

Abstract

Nutritional strategies, including feed management measures, are promising meth-
ods for CH, and overall GHG reduction. Evidence from literature is reviewed in this
article in relation to the effects of forage quality (digestible organic matter, DOM)
and forage type (grasses vs. legumes, and maize). The major determinants of forage
quality are botanical composition and phenological stage, i.e., at advanced growth
stages of plants, the fibre content increases while DOM decreases. Methane yield
(g/kg DMI) decreases with increased digestibility of forages in both dairy cattle and
sheep, and also CH, intensity (g/kg milk) decreases with increased digestibility of
forages for dairy cattle. Using forage legumes in ruminant feeding systems can re-
duce overall GHG emissions due to decreased N fertilizer use and related emissions.
Recommended dietary mitigation measures are often related to a reduction in N ex-
cretion such as better matching of dietary protein to animal needs, shifting N excre-
tion from urine to faeces (by tannin inclusion at low levels) and reducing the amount
of excreted fermentable organic matter. Methane decreases with increasing intake of
forage legumes rich in tannins and there is a shift of N partition from urinary N to-
wards faecal N. Reduced CH,, emissions from ruminants fed on forage-based diets will
decrease the carbon footprint of livestock and agriculture and improve the efficiency
of productive ruminants in both developing and developed countries. Likewise, esti-
mations of net CH, output should account for enteric CH, emissions and soil carbon
(C) sequestration of land used for feed production (i.e., grasslands and croplands).
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options, feed and feed management measures, such as enhanced forage

quality (increased digestibility by feed processing [i.e., drying, grinding])

Livestock production is responsible for environmental burdens par-
ticipating in around 14.5% of global greenhouse gas emissions (GHG;
Gerber et al., 2013). Among those GHG, enteric methane (CH,) emis-
sion contributes up to 40% of livestock's GHG (Gerber et al., 2013).
Consequently, several nutritional strategies to mitigate enteric CH, have
been studied and developed (Hristov et al., 2013). Among the different

and livestock precision feeding are the most promising strategies to re-
duce enteric CH, (Gerber et al., 2013). Animal performance is related
to efficient forage use associated with good nutrition management
allowing to combine increased animal production with CH, reduc-
tion measures (Pereira et al., 2015). In the last decades, a large num-

ber of studies have been conducted related to the effects of forages
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(grass, legumes, or mixture) on N excretion and N,0 emissions, and to
the effects of grassland management on C fluxes. Grass-based diet has
gained interest, as bringing together pasture ecosystem services and
livestock production. Among pasture ecosystem services beneficial for
livestock production and emissions are biodiversity, which relates to
forage quality and subsequent product quantity and quality but also to
the environment, e.g., legumes reduce the need for mineral N fertilisa-
tion and related N,O emissions, and finally C sequestration of pastures.

However, the different options diverge in terms of viability,
costs, and acceptance by the producers. To be adopted, these strat-
egies should provide similar or increased animal performance and
economic viability while reducing CH,, intensity (emission per unit of
milk or meat), but also other sources of GHG, such as N,O from crop
fertilizers/manure and CO, from feed production and C sequestra-
tion (Gerber et al., 2013; Pereira et al., 2015).

This article aims to review the forage GHG mitigating options from
individual studies and review articles from the literature that are the
most documented and promising. It summarises both qualitative and
quantitative effects of those mitigating options (i.e., forage quality, type,
and conservation modes, grassland management, biodiversity) mostly
on enteric CH,, N excretion and related N,0 (along with CH4) and C
sequestration. Moreover, it provides insights into statistical models that
consider the effects of diet composition, such as the chemical com-
position or digestibility of forages on GHG emissions. Their ability to
capture the GHG abatement options is crucial nowadays in order to be
implemented into GHG accounting tools or national GHG inventories.

2 | ENTERIC METHANE MITIGATION
2.1 | Forage quality

Increasing forage digestibility and digestible forage intake seems to be
one of the main CH, mitigation practices, recommended worldwide
(Hristov et al., 2013). The effect of forage organic matter (OM) digest-
ibility on CH, emission intensity has been studied for forages with
different nature (i.e., fresh herbage and silage) and for different forage
types, such as grass, legume or maize, and for different animal catego-
ries (cattle and sheep; Phelan et al., 2015; Van Gastelen et al., 2019).
Though large efforts have been made, the response in CH, emission is
not consistent and depends on the unit as well as the animal category
considered (Van Gastelen et al., 2019). Increased forage digestibility
resulted in increased dry-matter intake (DMI, kg/day) and conse-
quently increased CH, emission (g/day) for dairy and beef cattle, but
not for sheep. When intake or production is considered, both CH,
yield (g/kg DMI) and CH, intensity (g/kg milk) are decreased with in-
creased digestibility for dairy cattle, but no difference in CH,, yield (g/
kg DMI) was observed for beef cattle. For sheep, CH,, yield decreased
with increased forage digestibility (Van Gastelen et al., 2019).

It is important to include forage quality into GHG accounting
tools or GHG inventory methodology. A number of equations have
been developed during the last years for different animals fed forages

or on pasture to predict CH, emission (e.g., Archiméde et al., 2011;
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Ellis et al., 2007; Escobar-Bahamondes et al., 2017; Van Lingen
et al.,, 2019; Niu et al., 2018; Rico et al., 2016). To be more general,
Sauvant et al. (2018) have developed an equation using “Methafour”
database (104 publications, 211 experiments, 592 treatments; see
Noziére et al., 2018), comprising CH, emissions measured under cur-
rently applicable measurement techniques, in ruminants only fed with
forages, used for GHG inventory methodology and in INRA's feeding
system. Briefly, the equation estimated the CH, production per kg of
digestible OM (g/kg DOM; 34.7 + 9.1, min = 10.9, max = 69.1) and
was based on the combination of feeding level (FL, DMI % of body
weight (BW)) and NDF content of forage (proposed by Eugéne et al.,
2014), and the DOM content of the forage (Equation 1 in Table 1).
There are only a few direct comparisons in in vivo trials, and con-
sequently, the specific effect of type of forage and species cannot
be assessed. There is a marginal increase of the slope for forages
with low quality as compared to mean CH, production (i.e., 60 vs.
40 g/kg DOM, respectively) whereas for forages with high quality,
there is a marginal decrease of the slope as compared to mean CH,
production (36 vs. 40 g/kg DOM, respectively). Comparisons of rela-
tionships including CH,/DMI (Equation 2) or CH,/DOM (Equation 1)
indicate that DOM is an important explanatory variable that needs to
be considered (Table 1). Consequently, equations with CH,/DOM are
recommended as DOM considers both quantity and quality of for-
age. For animals fed with forages, there is a close positive relationship
between CH,% of gross energy (GE) and the acetate to propionate
ratio in the rumen (C,/C,; Moss et al., 2000), as illustrated in Figure 1.
The fermentation of cell wall carbohydrates in forages generally pro-
duces a higher C,/C, ratio in the rumen and consequently a higher
amount of CH, as compared to non-fibre carbohydrate fermentation
(Hegarty, 1999; Moss et al., 2000). Indeed, propionate production fa-
vours competitive pathways for H, use in the rumen, whereas acetate
production favours H, production in the rumen (Moss et al., 2000).

The difference between animals (bovine vs. ovine) could also
be linked to mean retention time differences and fractional deg-
radation rates of feeds in the rumen (Poppi et al., 1981; Siddons &
Paradine, 1983). Poppi et al. (1981) reported a longer mean retention
time and lower fractional degradation rates in beef and dairy cattle
than in sheep.

TABLE 1 Methane prediction for animal fed forages

CH, (g/kg DOM) = 34.95 - 4.05 x FL + 0.027 x NDF - 0.010 x
DOM. (Equation 1)

(n of data points = 412, number of trials = 153, RMSE = 3.1 g/kg
DOM). Sauvant et al. (2018)

CH, (g/kg DMI) = -22.4 - 2.25 x FL + 0.137 x DOM (g/kg DM) -
0.00009 x DOM? (g/kg DM). (Equation 2)
(n =283, n trials = 53, RMSE = 1.6 g/kg DMI). Sauvant et al. (2011)

CH, (g/kg DOM) = 34.26 - 3.96 x FL + 0.027 x NDF - 0.008 x
DOM - 1.72 x Log,,, (1 + TAN). (Equation 3)

(n =398, n trials = 147, RMSE = 3.1 g/kg DOM) Eugéne, Sauvant,
et al. (2019)

Note: FL is the feeding level (DMI1%BW), NDF content, digestible OM
(DOM) content and TAN is the tannin content (g/kg DM) of the forages.
Methane yield is expressed as g/kg DMI or g/kg DOM.
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FIGURE 1 Intra-experiment
relationships between energy from CH,,
in % of gross energy (ECH,%GE) and
the acetate/propionate (C,/C,) ratio in
the rumen, for ruminant fed-forages,

in different studies (from Methafour

Py database)

log(tanin intake g/d)

According to the analysis of the "Methafour" database (Noziére
et al., 2018) for this present review, the main factor of forage quality
is the stage of growth (i.e., phenology of vegetation, Baumont et al.,
2018); when the growth stages advance (i.e., the vegetation becomes
older as moving from vegetative to generative cycle), we observed an
increase in the crude fibre (3.72 + 3.28 g/kg DM) and NDF contents
(4.78 + 3.54 g/kg DM) for every 10 days of grass growth, which ex-
plains the decrease in the quality. Most of the studies used in this
analysis were conducted during spring and not in autumn where a
delayed harvest time also results in older vegetation but then with-
out generative grass stems. However, there is also a decline in the
level of DMI/BW (-0.15 + 0.08 g/kg BW for every 10 days). This last
parameter has a dominant effect on CH, production which increases
per unit of DMI (0.145 + 0.106 g/kg DM for 10 days) but not per kg
BW, leading to a mean decrease equal to 0.51 + 0.06 g/kg DM.

2.2 | Forage type and conservation methods
2.2.1 | Legumes versus grass

Feeding forages, especially forage legume species, represents an
interesting strategy to both provide nitrogen to the animal and de-
crease CH, emissions, thus enhancing animal productivity (growth,
milk, and wool production) and mitigating climate change (CH,, N,0,
and ammonia emissions; Makkar, 2003; Reed, 1995). However, sev-
eral authors have stressed the importance to conduct diet improve-
ments in a holistic multi-criteria approach (Kebreab et al., 2006; Van
den Pol et al., 2018) in order to integrate diet management to all
aspects of a farm (field operations, supply chain, socio-economics,
environment, etc.). For instance, one important factor of diet is the
ability of forages to prevent gastrointestinal parasitic nematodes
(Makkar, 2003; Mueller-Harvey et al., 2019). Forage legumes contain-
ing condensed tannins (e.g., sainfoin (Onobrychis viciifolia Scop.), birds-

foot trefoil (Lotus corniculatus L.), and sulla (Hedysarum coronarium L.))

or polyphenol oxidase enzymes (e.g., red clover (Trifolium pratense
L.) have been shown to reduce rumen protein degradation in vitro
(Makkar, 2003) and ruminants seem to capture these proteins more
efficiently into meat and milk. However, more evidence is required
using in vivo production experiments. To assess the quantitative ef-
fects of tannins on CH, emissions, Eugéne, Doreau, et al. (2019) con-
ducted a meta-analysis. Although several reviews have been published
on that topic (Jayanegara et al., 2012), only a few general equations,
mostly derived from in vitro trials, have been published because of the
diversity in methods and types of tannins. Using the “Methafour” da-
tabase (Noziére et al., 2018), it was possible to significantly complete
Equation 1 by integrating tannin content (TAN, g/kg DM, Equation 3).
In Equation 3 (see Table 1), CH, (g/kg DOM; 34.7 + 9.1, min = 10.9,
max = 69.1 g/kg DOM) is expressed by the log-transformed TAN
(Eugene, Sauvant, et al., 2019). In spite of this, the coefficients of re-
gression of other variables remained fairly stable between Equations
1 and 3. Consequently, we recommend using the TAN coefficient in
Equation 3 to evaluate the average quantitative effect of tannins in all
types of diets. Nevertheless, more data are needed to fully assess the
differential effects of the wide variety of tannins in different diets,
concerning the structure/activity relationships of tannins (condensed
or hydrolysable), and the long-term effects of such diets.

The use of forage legumes such as lucerne (Medicago sativa L.),
red clover or white clover (Trifolium repens L.) that contain high con-
centrations of degradable proteins may increase the risk of bloat
(Phelan et al., 2015). Because these legumes are associated with high
voluntary intake and fast rates of particle breakdown in the rumen,
they tend to be associated with higher bloat risks. Sainfoin, birdsfoot
trefoil or sulla contain tannins or saponins, which may explain their
low risk of bloat. However, when compared to grass- or cereal-based
ruminant production systems using high amounts of N fertilizer, for-
age legume-based production systems (i.e., farms) tend to have a
less negative environmental impact on plant species biodiversity, N
losses via leaching and GHG emissions (Phelan et al., 2015). Although

these forage legumes generally have lower yields and persistence,
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genetic modification would allow the insertion of these traits into
more widely cultivated forages (Broderick, 2018).

The soluble carbohydrate content of forage legumes is low as
compared to forage grasses, so that the use of supplements rich in
starch (cereals) are required (Ruckle et al., 2017).

Forages rich in secondary plant compounds, such as tannins,
have been studied both for their nutritional effects on animal pro-
ductivity (Reed, 1995) and for their anti-methanogenic properties,
as thoroughly described by Jayanegara et al. (2012) and Jayanegara
et al. (2015). Condensed tannins (CTs) can account for up to 20%
of the dry matter in forage legumes rich in tannins used as rumi-
nant feeds. Compared to temperate forages, tropical forages have a
lower digestibility and differ in their chemical and structural compo-
sition (Leng, 1990). Ruminants fed tropical grasses seemed to have
increased CH, emissions as compared to when fed tropical legumi-
nous forages (Archimede et al., 2011; Eugéne et al., 2014; Table 2).

However, the mitigating effect of tannins on CH, is inconsistent
(Beauchemin et al., 2008; Makkar, 2003). The discrepancies of re-
sponses of animals to tannins among different studies are attributed
to the different tannin concentrations in the diet, chemical struc-
tures of tannins, and types of diets. Recent research has highlighted
the importance of the molecular structure of tannins (Mueller-
Harvey et al., 2019). An establishment of a structure-activity rela-
tionship would be required to explain differences among studies
and obtain consistent analyses of the beneficial effects related to
tannins (Patra & Saxena, 2011). Likewise, multi-criteria analysis of
the “Methafour” database indicated that the use of tannin-rich diets
shifted the N partition from urinary N towards faecal N (Figure 2a).
Consequently, as urinary N is a source of N,O, a shift towards faecal
N will decrease N,0 emissions. This shift is explained by the positive
relation between faecal N excretion/non-digestible OM (g/kg) and
tannin contents (log-transformed) of forages fed (Figure 2b), in other
words, the correlation between TAN and N/C ratio of faecal excre-
tions (i.e., Mueller-Harvey et al., 2019).

Other possible diets becoming more interesting in the view of the

environment are legume silage (red clover; Dewhurst, 2012; Hristov

TABLE 2 Effect of forage type on CH, emission, in L/kg dry
matter intake (DMI), L/kg organic matter intake (OMI), L/kg
digested OM (DOM), from Archiméde et al. (2011)

CH, CH, CH,
(L/kgDMI)  (L/kg OMI) (L/kg DOM)
Grasses
C3 type 30.0° 33.1° 52.1°
C4 type 33.7° 38.8° 57.7°
Legumes
Cool 30.1°¢ 33.7%¢ 52.4°
Warm 2592 27.2° 40.72
SEM 1.8 1.8 29
p .001 .001 .001

abesyperscripts: Mean values within columns carrying no common
letters are significantly different at p < .05.
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et al., 2013) or mixtures of grass and legumes (such as white or red
clover, birdsfoot trefoil, sainfoin; Phelan et al., 2015) and the use of
legumes as an intercropping culture (such as Stylosanthes guianensis
(Aubl.) Sw., Lablab purpureus (L.) Sweet, and Vigna unguiculata (L.)
Walp.) (Hassen et al., 2017). Indeed, intercropped legumes could in-
crease the forage productivity at the system level and help to preserve
biodiversity, while reducing N losses via leaching and gas emissions.

2.2.2 | Silages

Maize silage

Although responses vary, CH, emissions can be reduced when maize
silage replaces grass silage in the diet (Hristov et al., 2013). Van
Gastelen et al. (2019) have summarised different studies comparing
the CH, emission of ruminants fed maize silage in the replacement of
grass silage or legume silage.

Different responses in CH, emission and intake are observed be-
tween dairy, beef, and sheep. For sheep, there was a quadratic effect
on CH, yield (Jonker et al., 2016) when maize silage gradually re-
placed lucerne silage fed at an intake level of 2% BW. In other words,
methane vyield (g/kg of DMI; % of GEI) increased when sainfoin,
birdsfoot trefoil, sulla or red clover were used with up to 50% of the
diet. When using higher proportions of feed supplements, methane
yield decreased but the level did not fall below that of 100% lucerne
silage. For dairy cattle, increased levels of maize silage resulted in an
average decreased CH, yield (g/kg DMI; MJ/MJ GEl), while some
studies reported quadratic relations (Arndt et al., 2015; Hassanat
et al., 2013; Van Gastelen et al., 2019). Several factors may contrib-
ute to the responses observed. First, DMI and consequently intake
level (DMI % BW), feed digestibility and retention time in the rumen
may have an effect. Moreover, there might be a starch concentration
threshold that shifts the fermentation in the rumen towards more
propionate formation (Hassanat et al., 2013), but this was not ev-
idenced in the work of Jonker et al. (2016), where sheep were fed
increasing levels of maize silage in the replacement of lucerne silage.

Although maize silage decreases enteric CH, production, manure
CH, could increase due to increased faecal output of fermentable
OM. Especially soil CO, emissions are much greater for maize silage
compared with grass silage, reducing C sequestration potential as
a result of crop cultivation (Borjesson et al., 2018; Franzluebbers
et al. 2014). Accordingly, there is a need to use a holistic approach
to evaluate and reconcile animal production with GHG emissions for
different feed production systems.

Grass silage

Some studies and literature reviews indicate that the improvement
of digestibility of grass silage could lead to reduced methanogen-
esis (Van Gastelen et al., 2019). This can be explained by the stage
of maturity at which grass has been harvested, as grass silage can
have lower fibre concentration, higher fibre digestibility and higher
nitrogen content depending on mowing date, climate and species
mixture of the sward (Elgersma & Sgegaard, 2018). Accordingly,
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the phenological stage and subsequent optimal timing for mowing
may help to achieve high animal performance and reduced retention
time in the rumen (Dewhurst et al., 2009). These strategies are most
effective for dairy cattle, and also for beef cattle to a certain ex-
tent, but seem to have minor or no effects for sheep (Van Gastelen
et al., 2019).

3 | CSEQUESTRATION
3.1 | Mitigation through the C sequestration of
grazed grasslands

GHG balance studies with growing ruminants show a mean parti-
tion of ingested C between faeces (29%), CH, (4%), urine (4.5%),
CO, (58%) and 4.5% for the C balance (i.e., calorimetric studies
“Rumener” database, Sauvant & Giger-Reverdin, 2009). In lactating
ruminants, the corresponding values are 29% (faeces); 3.5% (CH,);
3.5% (urine); 42% (CO,), 3% retained and 21% in milk. The majority

4

log(tanin intake g/d)

of ingested C is thus partitioned into CO, and emitted into the air
(around 50% in cattle), and faecal C (around 30%, that returns to
grasslands), followed by milk, urine, CH, and C balance (Sauvant &
Giger-Reverdin, 2009).

There is evidence that the GHG balance of ruminants can be
improved by grass-based systems and the capacity of grasslands to
sequester C in soil. In general, grasslands have a higher soil organic
matter content and soil C has longer residence time than croplands,
because there is less soil disturbance (i.e., grassland ploughing, mow-
ing and renovation) and a greater proportion of the input from root
turnover is physically protected as chemically stabilized particulate
organic matter (Six et al., 2004).

In grasslands, the degree of sequestered C is primarily influenced
by plant productivity and the frequency and extent of disturbance (i.e.,
grazing; grassland ploughing and renovation). In view of that, graz-
ing has a direct impact on grassland productivity, plant community
structure and biogeochemical cycling. In grazed grasslands, much of
the primary production is ingested by animals, where about 50% are

emitted in the air (i.e., cow respiration), and returned to the soil in the
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form of faecal OM (non-digestible carbon; 25% to 40% of the intake,
depending directly on its digestibility); the remainder is returned to
the soil in the form of plant litter (ungrazed biomass) or root exudates.
Accordingly, effects of grazing are driven by plant tissue removal (de-
foliation, intake), excretion (dung and urine deposits; with a C urine/C
faecal ratio of 12.2 + 6.0%, Sauvant & Giger-Reverdin, 2009), but also
by trampling, which exerts mechanical pressure and causes physical
damage to the vegetation where animals pass repeatedly. Due to un-
even patterns of defoliation and animal returns, grazing animals pro-
mote spatial heterogeneity in C-N-P pools and fluxes, which add to a
mosaic of patches of variable vegetation height and feed quality, and
C storage potential (Bloor & Pottier, 2014).

At low grazing intensities, it seems that the animal excretion fa-
vours the N cycle in the soil and the net primary productivity of veg-
etation cover (via a reduction in above-ground standing biomass), as
well as litter production and plant nutrient status. Similarly, if there
is much dead plant material in the sward, shading the live leaves (e.g.,
extensive low-productive swards), grazing events can allow light to
penetrate into the plant canopy and encourage new tillers, leading
to an increase in the storage of C (Zhou et al., 2017). Conversely,
if grazing is too intense or the period between successive grazing
periods is too short, the biomass and soil cover (e.g., amount of live
leaves) can be reduced so that light interception falls, and growth
and C capture are reduced as well as litter and root production. In
these cases, intense grazing can lead to a reduction in soil C storage
(Derner & Schuman, 2007; Zhou et al., 2017). There exists, therefore,
a compromise between promoting animal production and promoting
carbon sequestration (see Soussana & Lemaire, 2014), which is the
compromise between biomass production (and intensity of use), and
C inputs to soil (via litter, animal wastes and roots). In the relation
between C storage and herbage use (i.e., ratio between produced
biomass and biomass removal by grazing), we observed an increase
of both, until an optimum beyond which the storage of C decreased
(threshold of ~0.5 to 0.7) with further increase in herbage use
(Klumpp & Graux, 2020). The C sequestration potential of European
grazed grasslands (on average 0.21 + 0.6 Mg C ha™ year’i) showed
large variability, related to on site-effects such as climate, soil type,
grazing intensity and vegetation cover (Klumpp & Graux, 2020).

3.2 | Indirect effects of forage quality C
sequestration

In productive systems, biomass production is associated with forage
quality given there is sufficient N available. Grasslands adapted to low
grazing levels are generally characterized by slow-growing plant spe-
cies and lower aboveground net primary productivity and quality, a mi-
crobial community dominated by fungi, as well as greater N retention
and C storage (see also Eugéne et al., 2014). In these latter pastures,
grazing has long-term effects on litter quality and quantity, which are
driven by changes in plant community composition and defoliation-
tolerant species or unpalatable species (Wardle et al., 2004). Under

medium to high grazing pressure, fast-growing, palatable species
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typical of nutrient-rich, managed grasslands show high above-ground
productivity and quality (lower C: N), promoting higher C inputs to soil
and rapid degradation by bacteria (Cotrufo et al., 2013).

3.3 | Effects of plant biodiversity on C sequestration

Grazing has the capacity to change the vegetation by modifying plant
botanical composition (presence of legumes in particular; Bagchi
& Ritchie, 2010; Zhou et al., 2017), which affects the supply of soil
with aerial and root plant biomass. Those in turn can affect not only
grassland productivity, but also soil organic matter decomposition.
Then again, in agricultural settings, plant diversity is often associated
with low biomass yield and low forage quality. Recent studies under-
line that increased plant diversity is an important production factor
being independent of management intensity, as it enhances quality-
adjusted yield (Schaub et al., 2020). Besides, it appears that grasslands
with complex flora (with high species number) allow higher C storage
(Hungate et al., 2017; Lange et al., 2015). This storage increases in fact
with the specific richness of the sward and with the presence of leg-
umes (Cong et al., 2014; Rutledge et al., 2017). The latter is probably
linked to a diversity of root systems (more or less dense and deep), as
well as to an increase in the availability of N in the presence of urine,
dung and legumes and thus, variation in primary productivity.

Most grasslands are subject to the marked seasonality of bio-
mass production. Annual cycles of temperature or rainfall impose
cycles of plant growth and phenology that result in cycles of bio-
mass abundance and quality. For instance, factors that affect for-
age quality are leaf-to-stem ratio, phenological stage, diseases and
pests. Forage digestibility declines with an increased stem propor-
tion; it declines as plants develop from the vegetative into the gen-
erative stage. For that reason, information on the nutritive value of
forage quality by the use of phenological stages may help to choose
suitable grazing/harvesting times and stocking rates. This, in turn,
may help to achieve higher animal performance without damage to
the vegetation and related decline in C sequestration potential, in-
creasein soil N,O and enteric CH, (see Vanden Pol et al., 2018). Poor
forage quality is often related to lower intake and digestibility and
thus increases the CH, yield of ruminants (Archiméde et al., 2011;
Rossignol et al., 2014). Although effects on CH, yield seem to be
variable, CH, intensity increases with reduced forage quality (Van
Gastelen et al., 2019). Accordingly, there are a number of trade-offs
that need to be considered when intensifying grazed systems (see
Soussana & Lemaire, 2014, Figure 3): (a) an increase in productivity
(and subsequent biomass removal) leads to a decline in the amounts
of organic carbon returned to the soil, (b) maximization of forage
quality (low C/N ratio) and the related increased digestibility (i.e.,
improved animal production) leads to a decline in mean residence
time of soil organic C (i.e., increase of root and shoot litter decom-
posability), and (c) increasing net primary productivity through fer-
tilizer supply and legumes (biological N fixation) leads to an increase
in N,O emissions (from fertilizer and urine) and CH, emissions from

enteric fermentation due to increased forage quality.
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4 | CONCLUSIONS

Feeding systems of ruminants based on high-quality forages can
decrease the contribution of livestock and agriculture to GHG.
The major determinant of forage quality is the stage of growth at
harvest and species mixture. With the advanced stage of growth,
the fibre contents increase resulting in higher methane produc-
tion. Forage legumes used in ruminant systems can decrease GHG
emissions due to lower N fertilizer use and fertilizer production,
enhancement of biodiversity and decreased parasitism in rumi-
nants. Therefore, they are environmentally and economically ben-
eficial for some systems, for which there is no overload of N supply.
Moreover, with regard to manure, dietary measures reducing the
amount of N excreted (e.g., better matching of dietary protein to
animal requirements), shifting N excretion from urine to faeces
(e.g., tannin inclusion at low levels) and reducing the amount of fer-
mentable organic matter excreted are recommended. Ruminants
will retain their niches because of their ability to produce valuable
human food from low-value feedstuffs. Employing these emerging
strategies will allow improved productive efficiency of ruminants
in both developing and developed countries. Net CH, output is
required to consider the enteric CH, emissions and soil C seques-
tration potential of fields having served for feed (e.g., grasslands
and croplands management). The next step could be a multicriteria
assessment of GHG mitigations based on forages, such as life cycle
analysis or process-based modelling, to consider the interactions
and trade-off/synergy between GHG.
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